A Robotic Prosthesis for an Amputee Drummer
نویسندگان
چکیده
The design and evaluation of a robotic prosthesis for a drummer with a transradial amputation is presented. The principal objective of the prosthesis is to simulate the role fingers play in drumming. This primarily includes controlling the manner in which the drum stick rebounds after initial impact. This is achieved using a DC motor driven by a variable impedance control framework in a shared control system. The user’s ability to perform with and control the prosthesis is evaluated using a musical synchronization study. A secondary objective of the prosthesis is to explore the implications of musical expression and human-robotic interaction when a second, completely autonomous, stick is added to the prosthesis. This wearable robotic musician interacts with the user by listening to the music and responding with different rhythms and behaviors. We recount some empirical findings based on the user’s experience of performing under such a paradigm.
منابع مشابه
Robotic lower limb prosthesis design through simultaneous computer optimizations of human and prosthesis costs
Robotic lower limb prostheses can improve the quality of life for amputees. Development of such devices, currently dominated by long prototyping periods, could be sped up by predictive simulations. In contrast to some amputee simulations which track experimentally determined non-amputee walking kinematics, here, we explicitly model the human-prosthesis interaction to produce a prediction of the...
متن کاملInitial Experimental Study on Dynamic Interaction Between an Amputee and a Powered Ankle-Foot Prostheses
Today, commercially available ankle-foot prostheses are completely passive, and consequently, their mechanical properties remain fixed with walking speed and terrain. Conversely, normal human ankle stiffness varies within each gait cycle and also with walking speed [1][2][3]. Furthermore, some studies have indicated that one of the main functions of the human ankle is to provide adequate energy...
متن کاملApplication of real-time machine learning to myoelectric prosthesis control: A case series in adaptive switching.
BACKGROUND Myoelectric prostheses currently used by amputees can be difficult to control. Machine learning, and in particular learned predictions about user intent, could help to reduce the time and cognitive load required by amputees while operating their prosthetic device. OBJECTIVES The goal of this study was to compare two switching-based methods of controlling a myoelectric arm: non-adap...
متن کاملEvaluation of a Viscoelastic Ankle-Foot Prosthesis at Slow and Normal Walking Speeds on an Able-Bodied Subject
Objectives: This paper describes further improvement and preliminarily evaluation of a novel viscoelastic ankle-foot prosthesis prototype. The objective was to control the ankle hysteresis at slow and normal walking speeds. Methods: Inspired by the ankle biomechanics, in which the hysteresis differs based on the gait speeds, a manually damping control mechanism imbedded in the prosthesis for...
متن کاملSimultaneous Control of an Ankle-foot Prosthesis Model Using a Virtual Constraint.
Amputee locomotion can benefit from recent advances in robotic prostheses, but their control systems design poses challenges. Prosthesis control typically discretizes the nonlinear gait cycle into phases, with each phase controlled by different linear controllers. Unfortunately, real-time identification of gait phases and tuning of controller parameters limit implementation. Recently, biped rob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1612.04391 شماره
صفحات -
تاریخ انتشار 2016